Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Int Heart J ; 64(3): 344-351, 2023.
Article in English | MEDLINE | ID: covidwho-20235285

ABSTRACT

Although there is no sign of reinfection, individuals who have a history of coronavirus disease 2019 (COVID-19) may experience prolonged chest discomfort and shortness of breath on exertion. This study aimed to examine the relationship between atherosclerotic coronary plaque structure and COVID-19. This retrospective cohort comprised 1269 consecutive patients who had coronary computed tomographic angiography (CCTA) for suspected coronary artery disease (CAD) between July 2020 and April 2021. The type of atherosclerotic plaque was the primary outcome. Secondary outcomes included the severity of coronary stenosis as determined via the Coronary Artery Disease-Reporting and Data System (CAD-RADS) classification and the coronary artery calcium (CAC) score. To reveal the relationship between the history of COVID-19 and the extent and severity of CAD, propensity score analysis and further multivariate logistic regression analysis were performed. The median age of the study population was 52 years, with 53.5% being male. COVID-19 was present in 337 individuals. The median duration from COVID-19 diagnosis to CCTA extraction was 245 days. The presence of atherosclerotic soft plaque (OR: 2.05, 95% confidence interval [CI]: 1.32-3.11, P = 0.001), mixed plaque (OR: 2.48, 95% CI: 1.39-4.43, P = 0.001), and high-risk plaque (OR: 2.75, 95% CI: 1.98-3.84, P < 0.001) was shown to be linked with the history of COVID-19 on the conditional multivariate regression analysis of the propensity-matched population. However, no statistically significant association was found between the history of COVID-19 and the severity of coronary stenosis based on CAD-RADS and CAC score. We found that the history of COVID-19 might be associated with coronary atherosclerosis assessed via CCTA.


Subject(s)
COVID-19 , Coronary Artery Disease , Coronary Stenosis , Plaque, Atherosclerotic , Humans , Male , Middle Aged , Female , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Artery Disease/complications , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/epidemiology , Retrospective Studies , Coronary Angiography/methods , COVID-19 Testing , Risk Factors , COVID-19/epidemiology , COVID-19/complications , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/epidemiology , Coronary Stenosis/complications , Computed Tomography Angiography , Predictive Value of Tests
2.
BMC Cardiovasc Disord ; 23(1): 106, 2023 02 24.
Article in English | MEDLINE | ID: covidwho-2266236

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been associated with late-onset cardiovascular complications primarily due to a hypercoagulable state. Its association with Wellens' syndrome, which reflects a stenosis in the proximal left anterior descending coronary artery, is not well established. We present two cases diagnosed with this syndrome following their COVID-19 acute phase despite taking adequate anticoagulation. CASE PRESENTATION: We present two patients with incidental electrocardiography (ECG) showing the typical Wellens'-related changes, with an underlying severe triple-vessel coronary artery disease a few weeks following a severe COVID-19 infection associated with high inflammatory markers. The stenotic lesions were diagnosed by cardiac catheterization, and both patients underwent Coronary Artery Bypass Grafting successfully. Notably, patients' baseline ECGs were normal, and they were maintained on Rivaroxaban 10 mg following their viral illness. CONCLUSION: Despite advances in the preventive measures for COVID-19 complications, its pathophysiologic impact on vasculature and atherosclerosis is still incompletely understood. Further clinical trials must be conducted to study this association between Wellens' syndrome and this virus to prevent life-threatening complications.


Subject(s)
COVID-19 , Coronary Artery Disease , Coronary Stenosis , Humans , Coronary Artery Disease/complications , COVID-19/complications , Syndrome , Coronary Angiography , Electrocardiography , Coronary Stenosis/diagnosis
3.
Int J Environ Res Public Health ; 19(24)2022 12 11.
Article in English | MEDLINE | ID: covidwho-2155116

ABSTRACT

Air pollution and COVID-19 infection affect the pathogenesis of cardiovascular disease. The impact of these factors on the course of ACS treatment is not well defined. The purpose of this study was to evaluate the effects of air pollution, COVID-19 infection, and selected clinical factors on the occurrence of perioperative death in patients with acute coronary syndrome (ACS) by developing a neural network model. This retrospective study included 53,076 patients with ACS from the ORPKI registry (National Registry of Invasive Cardiology Procedures) including 2395 COVID-19 (+) patients and 34,547 COVID-19 (-) patients. The neural network model developed included 57 variables, had high performance in predicting perioperative patient death, and had an error risk of 0.03%. Based on the analysis of the effect of permutation on the variable, the variables with the greatest impact on the prediction of perioperative death were identified to be vascular access, critical stenosis of the left main coronary artery (LMCA) or left anterior descending coronary artery (LAD). Air pollutants and COVID-19 had weaker effects on end-point prediction. The neural network model developed has high performance in predicting the occurrence of perioperative death. Although COVID-19 and air pollutants affect the prediction of perioperative death, the key predictors remain vascular access and critical LMCA or LAD stenosis.


Subject(s)
Acute Coronary Syndrome , Air Pollutants , Air Pollution , COVID-19 , Coronary Stenosis , Humans , Coronary Stenosis/pathology , Coronary Stenosis/therapy , Acute Coronary Syndrome/epidemiology , Constriction, Pathologic , Retrospective Studies , Coronary Angiography , Air Pollution/adverse effects
4.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1286552.v2

ABSTRACT

Background: : The prevalence of cardiovascular complications in COVID-19 infection varied in different studies. One of these complications is myocardial infarction. A disturbance of the blood supply can lead to myocardial infarction by clot formation in the arteries. However, no evidence of significant coronary stenosis has been found in more than 50% of patients with COVID-19 and ST elevation.Case Presentation: 38 and 49 years old men (patients 1,2) were admitted to our hospital with the complaint of typical chest pain and COVID-19 symptoms. The real-Time Polymerase Chain Reaction (RT-PCR) test confirmed COVID-19 in both. Patient 1 represented inferior posterior ST-Elevation Myocardial Infarction (STEMI) in his electrocardiogram (ECG). Also, patient 2 has ST-elevation in high lateral and septal leads (I, AVL, V1, V2) and ST-segment depression in AVR and inferior leads (III, AVF). Their troponin was positive. The vital signs were normal in both of them. Patient 2 just had a history of aortic valve replacement (AVR) 5 years ago. However, Patient 1 had no medical history. Transthoracic Echocardiography (TTE) data demonstrated some disturbances in patient 1 Severe hypokinesia of Inferior, Posterior, Lateral, and Septal walls. However, TTE data were unremarkable for patient 2. We prescribed recommended medications for them. Therefore, their ECG changes were corrected, and his condition improved. In addition, Coronary angiography was done that demonstrated patent and normal coronary arteries in both of them.Conclusion : COVID-19 infection can cause normal coronary arteries myocardial infarction with probable two mechanisms prolonged vasospasm or intraluminal coronary thrombogenesis.


Subject(s)
Hypokinesia , Inferior Wall Myocardial Infarction , Coronary Aneurysm , Coronary Stenosis , COVID-19
5.
Heart Vessels ; 35(10): 1349-1359, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1451965

ABSTRACT

Fractional flow reserve (FFR) assessed during adenosine-induced maximal hyperemia has emerged as a useful tool for the guidance of percutaneous coronary interventions (PCI). However, interindividual variability in the response to adenosine has been claimed as a major limitation to the use of adenosine for the measurement of FFR, carrying the risk of underestimating the severity of coronary stenoses, with potential negative prognostic consequences. Genetic variants of the adenosine receptor A2a (ADORA2A gene), located in the coronary circulation, have been involved in the modulation of the hyperemic response to adenosine. However, no study has so far evaluated the impact of the single nucleotide polymorphism rs5751876 of ADORA2A on the measurement of FFR in patients undergoing percutaneous coronary intervention that was, therefore, the aim of our study. We included patients undergoing coronary angiography and FFR assessment for intermediate (40-70%) coronary lesions. FFR measurement was performed by pressure-recording guidewire (Prime Wire, Volcano), after induction of hyperemia with intracoronary boli of adenosine (from 60 to 1440 µg, with dose doubling at each step). Restriction fragment length polymorphism (RFLP) analysis was performed to assess the presence of rs5751876 C>T polymorphism of ADORA2a receptor. We included 204 patients undergoing FFR measurement of 231 coronary lesions. A total of 134 patients carried the polymorphism (T allele), of whom 41 (30.6%) in homozygosis (T/T).Main clinical and angiographic features did not differ according to ADORA2A genotype. The rs5751876 C>T polymorphism did not affect mean FFR values (p = 0.91), the percentage of positive FFR (p = 0.54) and the duration of maximal hyperemia. However, the time to recovery to baseline FFR values was more prolonged among the T-allele carriers as compared to wild-type patients (p = 0.04). Based on these results, in patients with intermediate coronary stenoses undergoing FFR assessment with adenosine, the polymorphism rs5751876 of ADORA2A does not affect the peak hyperemic response to adenosine and the results of FFR. However, a more prolonged effect of adenosine was observed in T-carriers.


Subject(s)
Coronary Artery Disease/genetics , Coronary Stenosis/genetics , Fractional Flow Reserve, Myocardial/genetics , Polymorphism, Single Nucleotide , Receptor, Adenosine A2A/genetics , Adenosine/administration & dosage , Aged , Cardiac Catheterization , Coronary Angiography , Coronary Artery Disease/diagnosis , Coronary Artery Disease/physiopathology , Coronary Artery Disease/therapy , Coronary Stenosis/diagnosis , Coronary Stenosis/physiopathology , Coronary Stenosis/therapy , Female , Humans , Hyperemia/physiopathology , Male , Middle Aged , Percutaneous Coronary Intervention , Phenotype , Predictive Value of Tests , Severity of Illness Index , Vasodilator Agents/administration & dosage
6.
J Cardiothorac Surg ; 16(1): 182, 2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1282263

ABSTRACT

BACKGROUND: The timing for heart surgery following cerebral embolization after cardiac valve vegetation is vital to postoperative recovery being uneventful, additionally Covid-19 may negatively affect the outcome. Minimally invasive methods and upgraded surgical instruments maximize the benefits of surgery also in complex cardiac revision cases with substantial perioperative risk. CASE PRESENTATION: A 68 y.o. patient, 10 years after previous sternotomy for OPCAB was referred to cardiac surgery on the 10th postoperative day after neurosurgical intervention for intracerebral bleeding with suspected mitral valve endocarditis. Mitral valve vegetation, tricuspid valve insufficiency and coronary stenosis were diagnosed and treated by minimally invasive revision cardiac surgery on the 14th postoperative day after neurosurgery. CONCLUSION: The present clinical case demonstrates for the first time that the minimally invasive approach via right anterior mini-thoracotomy can be safely used for concomitant complex mitral valve reconstruction, tricuspid valve repair and aorto-coronary bypass surgery, even as a revision procedure in the presence of florid endocarditis after recent neurosurgical intervention. The Covid-19 pandemic and prophylactic patient isolation slow down the efficacy of pulmonary weaning and mobilisation and prolong the need for ICU treatment, without adversely affecting long-term outcome.


Subject(s)
Coronary Artery Bypass/methods , Coronary Stenosis/surgery , Endocarditis/surgery , Minimally Invasive Surgical Procedures/methods , Mitral Valve/surgery , Tricuspid Valve Insufficiency/surgery , Video-Assisted Surgery/methods , Aged , COVID-19/epidemiology , Coronary Artery Bypass/adverse effects , Coronary Artery Bypass/instrumentation , Humans , Male , Minimally Invasive Surgical Procedures/adverse effects , Minimally Invasive Surgical Procedures/instrumentation , Pandemics , Postoperative Complications , Reoperation , SARS-CoV-2 , Thoracotomy/adverse effects , Thoracotomy/instrumentation , Thoracotomy/methods , Video-Assisted Surgery/adverse effects
7.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-340141.v1

ABSTRACT

Background: The timing for heart surgery following cerebral embolization after cardiac valve vegetation is vital to postoperative recovery being uneventful, additionally Covid-19 may negatively affect the outcome. Minimally invasive methods and upgraded surgical instruments maximize the benefits of surgery also in complex cardiac revision cases with substantial perioperative risk. Case Presentation: A 68 y.o. patient, 10 years after previous sternotomy for OPCAB was referred to cardiac surgery on the 10 th postoperative day after neurosurgical intervention with suspected mitral valve endocarditis. Mitral valve vegetation, tricuspid valve insufficiency and coronary stenosis were diagnosed and treated by minimally invasive revision cardiac surgery. Conclusion: The present clinical case demonstrates for the first time that the minimally invasive approach via right anterior mini-thoracotomy can be safely used for concomitant complex mitral valve reconstruction, tricuspid valve repair and aorto-coronary bypass surgery, even as a revision procedure in the presence of florid endocarditis after recent neurosurgical intervention. The Covid-19 pandemic and prophylactic patient isolation slow down the efficacy of pulmonary weaning and mobilisation and prolong the need for ICU treatment, without adversely affecting long-term outcome.


Subject(s)
Tricuspid Valve Insufficiency , Coronary Aneurysm , Coronary Stenosis , COVID-19 , Endocarditis
8.
Int J Legal Med ; 135(2): 577-581, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002092

ABSTRACT

The coronavirus disease 2019 (COVID-19), due to SARS-CoV-2, is primarily a respiratory disease, causing in most severe cases life-threatening acute respiratory distress syndrome (ARDS). Cardiovascular involvement can also occur, such as thrombosis or myocarditis, generally associated with pulmonary lesions. Little is known about SARS-CoV-2-induced myocarditis. We report the case of a 69-year-old man suffering from a refractory cardiogenic shock, without significant lung involvement. Prior to death, several nasopharyngeal swabs and distal bronchoalveolar lavage were sampled in order to perform RT-PCR analyses for SARS-CoV-2-RNA, which all gave negative results. Autopsy showed coronary atherosclerosis, without acute complication. Microscopic examination of the heart revealed the existence of an intense multifocal inflammatory infiltration, in both ventricles and septum, composed in its majority of macrophages and CD8+ cytotoxic T lymphocytes (CD4/CD8 ratio: 0.11). Immunohistochemistry for anti-SARS nucleocapsid protein antibody was strongly positive in myocardial cells, but not in lung tissue. RT-PCR was realized on formalin-fixed paraffin-embedded lung and heart tissue blocks: only heart tissue was positive for SARS-CoV-2 RNA. In conclusion, this exhaustive post-mortem pathological case study of fulminant myocarditis demonstrates the presence of SARS-CoV-2 RNA in heart tissue, without significant lung involvement. Immunohistochemistry showed that the virus was specifically localized in cardiomyocytes and induced a strong cytotoxic T cells inflammatory response. This case report thus gives new insight in the pathogenesis of SARS-CoV-2-induced myocarditis and emphasizes on the importance and reliability of post-mortem analyses in order to better understand the physiopathology of this worldwide spreading new viral disease.


Subject(s)
COVID-19/diagnosis , Heart/virology , Myocarditis/virology , Myocardium/pathology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Aged , Coronary Stenosis/pathology , Humans , Male , Myocarditis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL